If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49w^2-7w-20=0
a = 49; b = -7; c = -20;
Δ = b2-4ac
Δ = -72-4·49·(-20)
Δ = 3969
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3969}=63$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-63}{2*49}=\frac{-56}{98} =-4/7 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+63}{2*49}=\frac{70}{98} =5/7 $
| 5x+12x-20=65 | | 5(3+5r)=140 | | 13(4x-3)=3x | | X^2+y^2=26.01 | | -15r=135 | | 13=2(w-6)-7w | | 0.15*x=700 | | 5x-13=14x-9 | | 14x-6=2x-90 | | 9x^2+2=83 | | 14x-6=2x-98 | | 7(2x-6)(x+3)=0 | | (2n+7)(n-3)=0 | | 10r=9r+ | | 2×(x+3)=12-x | | 2^2x-4=8 | | 10y+42=37 | | 2x+2=7x-8 | | 3x-0.66=x | | 5(5x+3)=-4(2x-4) | | 7/35=x/360 | | 2(x+6=3(x-2) | | 5/3=6/v | | 8x-2(x+1)=4x | | 16t^2+12t+10=0 | | 4(m-60)=8(15-m) | | 8=4/3x-32/3 | | x^2-25=44 | | 16t^2+12t+19=0 | | 7x+4+8x-6+7x-5+6x+3=360 | | 7=4/3x-35/3 | | (x-10)+(x+4)=180 |